高數(shù)-考研-多元函數(shù)微分學的應用-第一、二節(jié)課件
-
資源ID:233650206
資源大?。?span id="voyselq" class="font-tahoma">1.97MB
全文頁數(shù):29頁
- 資源格式: PPT
下載積分:20積分
快捷下載

會員登錄下載
微信登錄下載
微信掃一掃登錄
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,就可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰。
5、試題試卷類文檔,如果標題沒有明確說明有答案則都視為沒有答案,請知曉。
|
高數(shù)-考研-多元函數(shù)微分學的應用-第一、二節(jié)課件
第三章第三章 多元函數(shù)微分學的應用多元函數(shù)微分學的應用第一節(jié)第一節(jié) 曲線的切線與法平面曲線的切線與法平面第二節(jié)第二節(jié) 曲面的切平面與法線曲面的切平面與法線第三節(jié)第三節(jié) 無約束極值與有約束極值無約束極值與有約束極值第一節(jié) 曲線的切線與法平面上一頁上一頁下一頁下一頁返回返回設空間曲線的方程設空間曲線的方程(1)式中的三個函數(shù)均可導式中的三個函數(shù)均可導.曲線的切線與法平面上一頁上一頁下一頁下一頁返回返回考察割線趨近于極限位置考察割線趨近于極限位置切線的過程切線的過程上式分母同除以上式分母同除以割線割線 的方程為的方程為上一頁上一頁下一頁下一頁返回返回曲線在曲線在M處的切線方程處的切線方程切向量:切向量:切線的方向向量稱為曲線的切向量切線的方向向量稱為曲線的切向量.法平面:法平面:過過M點且與切線垂直的平面點且與切線垂直的平面.上一頁上一頁下一頁下一頁返回返回解解切線方程切線方程法平面方程法平面方程上一頁上一頁下一頁下一頁返回返回1.空間曲線方程為空間曲線方程為法平面方程為法平面方程為特殊地:特殊地:上一頁上一頁下一頁下一頁返回返回2.空間曲線方程為空間曲線方程為切線方程為切線方程為法平面方程為法平面方程為上一頁上一頁下一頁下一頁返回返回上一頁上一頁下一頁下一頁返回返回所求切線方程為所求切線方程為法平面方程為法平面方程為上一頁上一頁下一頁下一頁返回返回空間曲線的切線與法平面空間曲線的切線與法平面(當空間曲線方程為一般式時,求切向(當空間曲線方程為一般式時,求切向量注意采用量注意采用推導法推導法)小結上一頁上一頁下一頁下一頁返回返回第二節(jié) 曲面的切平面與法線上一頁上一頁下一頁下一頁返回返回設曲面方程為設曲面方程為曲線在曲線在M處的切向量處的切向量在曲面上任取一條通在曲面上任取一條通過點過點M的曲線的曲線曲面的切平面與法線上一頁上一頁下一頁下一頁返回返回令令則則切平面方程為切平面方程為上一頁上一頁下一頁下一頁返回返回法線方程為法線方程為曲面在曲面在M處的法向量即處的法向量即垂直于曲面上切平面的向量稱為曲面的法向量垂直于曲面上切平面的向量稱為曲面的法向量.上一頁上一頁下一頁下一頁返回返回特殊地:空間曲面方程形為特殊地:空間曲面方程形為曲面在曲面在M處的切平面方程為處的切平面方程為曲面在曲面在M處的法線方程為處的法線方程為令令上一頁上一頁下一頁下一頁返回返回切平面切平面上點的上點的豎坐標豎坐標的增量的增量因為曲面在因為曲面在M處的切平面方程為處的切平面方程為上一頁上一頁下一頁下一頁返回返回其中其中上一頁上一頁下一頁下一頁返回返回解解切平面方程為切平面方程為法線方程為法線方程為上一頁上一頁下一頁下一頁返回返回解解 令令切平面方程切平面方程法線方程法線方程上一頁上一頁下一頁下一頁返回返回解解設設 為曲面上的切點為曲面上的切點,切平面方程為切平面方程為依題意,切平面方程平行于已知平面,得依題意,切平面方程平行于已知平面,得上一頁上一頁下一頁下一頁返回返回因為因為 是曲面上的切點,是曲面上的切點,所求切點為所求切點為滿足方程滿足方程切平面方程切平面方程(1)切平面方程切平面方程(2)上一頁上一頁下一頁下一頁返回返回曲面的切平面與法線曲面的切平面與法線(求法向量的方向余弦時注意(求法向量的方向余弦時注意符號符號)小結上一頁上一頁下一頁下一頁返回返回思考題思考題上一頁上一頁下一頁下一頁返回返回思考題解答思考題解答設切點設切點依題意知切向量為依題意知切向量為切點滿足曲面和平面方程切點滿足曲面和平面方程上一頁上一頁下一頁下一頁返回返回練練 習習 題題上一頁上一頁下一頁下一頁返回返回上一頁上一頁下一頁下一頁返回返回練習題答案練習題答案上一頁上一頁下一頁下一頁返回返回作業(yè) P109 1 2 3 P114 1 5 6