同價(jià)值鏈管理和汽車之間半導(dǎo)體行業(yè)一個(gè)差異和分析改進(jìn)措施【中文6110字】【PDF+中文WORD】
同價(jià)值鏈管理和汽車之間半導(dǎo)體行業(yè)一個(gè)差異和分析改進(jìn)措施【中文6110字】【PDF+中文WORD】,中文6110字,PDF+中文WORD,價(jià)值鏈,管理,汽車,之間,半導(dǎo)體,行業(yè),一個(gè),差異,分析,改進(jìn),措施,中文,6110,PDF,WORD
【中文6110字】
同價(jià)值鏈管理和汽車之間半導(dǎo)體行業(yè):
一個(gè)差異和分析改進(jìn)措施
摘要
本文中給出的工作是針對(duì)不同的汽車供應(yīng)鏈和半導(dǎo)體行業(yè)的特性。本文將系統(tǒng)地識(shí)別和評(píng)估在這兩個(gè)行業(yè)之間存在的接口的弱點(diǎn)?;谶@一分析,提出了一種參考模型作為一種工具,協(xié)同價(jià)值鏈管理的措施分析汽車和半導(dǎo)體行業(yè)。參考模型定義了一組特定的優(yōu)化措施及有關(guān)類別的戰(zhàn)略、流程、技術(shù)和系統(tǒng),以確保更好的計(jì)劃和控制流程之間的汽車和半導(dǎo)體行業(yè)的一致性。模型和相關(guān)的措施旨在更有效協(xié)調(diào)生產(chǎn)能力和更好的應(yīng)對(duì)市場(chǎng)波動(dòng)之間的汽車和半導(dǎo)體行業(yè)。因此,一個(gè)更穩(wěn)定的更顯著的供應(yīng)鏈和物流成本會(huì)降低整個(gè)價(jià)值鏈。
關(guān)鍵詞:價(jià)值鏈管理;供應(yīng)鏈管理;協(xié)作。
1.介紹
創(chuàng)新和增加汽車的價(jià)值主要是由于電子和特別半導(dǎo)體組件。從安全氣囊導(dǎo)航系統(tǒng)和汽車以太網(wǎng)到微處理器,微芯片和模擬組件形成的基礎(chǔ)的各種各樣的車。
電子產(chǎn)品的附加值促使汽車的份額已經(jīng)很高,未來(lái)幾年將有所上升——特別是電氣化的60%進(jìn)步,從純電動(dòng)汽車電氣驅(qū)動(dòng)系統(tǒng)(即電動(dòng)車),包括網(wǎng)絡(luò)的趨勢(shì)汽車與環(huán)境[1]。所以,汽車工業(yè)的成功合作取決于它的直接電子零件及其供應(yīng)商供應(yīng)商在半導(dǎo)體行業(yè)是至關(guān)重要的。
2011年3月,當(dāng)?shù)卣鹪谌毡旧a(chǎn)線停止,很明顯微電子產(chǎn)業(yè)是相互關(guān)聯(lián)的。這類影響擴(kuò)展到材料,組件和系統(tǒng)供應(yīng)商在價(jià)值鏈和直接影響汽車行業(yè):在芯片制造短缺蔓延到供應(yīng)商日立和擾亂了四個(gè),五個(gè)日本日產(chǎn)工廠生產(chǎn)[2]。
盡管日本蒙受災(zāi)難,供應(yīng)的汽車工業(yè)和半導(dǎo)體產(chǎn)品證明其是非常困難的。隨著市場(chǎng)變得越來(lái)越不穩(wěn)定,不同的生產(chǎn)交貨期,創(chuàng)新和產(chǎn)品的生命周期,以及不協(xié)調(diào)計(jì)劃和控制過(guò)程的兩個(gè)行業(yè)導(dǎo)致生產(chǎn)過(guò)剩和減產(chǎn),因此,過(guò)度放牧和供應(yīng)短缺近年來(lái),為了保證長(zhǎng)期供應(yīng),構(gòu)成了對(duì)半導(dǎo)體行業(yè)的挑戰(zhàn),他們只提供它有限的時(shí)間。即使在高成本、電子組件不能正確地存儲(chǔ)為更長(zhǎng)一段時(shí)間簡(jiǎn)單的車身部分可以,和維護(hù)生產(chǎn)零部件涉及高成本的能力[3]。
2.供應(yīng)鏈的汽車和特征半導(dǎo)體行業(yè)
2.1.半導(dǎo)體的汽車價(jià)值鏈設(shè)備
半導(dǎo)體和其之間的價(jià)值鏈從傳統(tǒng)汽車工業(yè)發(fā)展,垂直集成結(jié)構(gòu)非常復(fù)雜。多個(gè)合作伙伴網(wǎng)絡(luò)。隨著汽車應(yīng)用只占全球半導(dǎo)體銷售額的8%市場(chǎng)[4],汽車需求并不是唯一的供應(yīng)鏈戰(zhàn)略的決定因素半導(dǎo)體行業(yè)。
處理的半導(dǎo)體制造商生產(chǎn)的硅晶片,通常需要2層供應(yīng)商在汽車價(jià)值鏈的作用。這意味著,他們的汽車供應(yīng)商提供他們的產(chǎn)品反過(guò)來(lái),電子行業(yè),提供一個(gè)或是多個(gè)汽車制造商(原始設(shè)備制造商,OEM)。
半導(dǎo)體制造的流程步驟分為前端和后端流程。在前端、芯片制造組裝、包裝和測(cè)試發(fā)生在后面結(jié)束。
2.2.價(jià)值鏈的特點(diǎn)和差異汽車和半導(dǎo)體行業(yè)
這部分強(qiáng)調(diào)了具體要求由價(jià)值鏈。研究遵循一個(gè)煙囪似的程序分析和比較商業(yè)環(huán)境的條件汽車和半導(dǎo)體行業(yè)縮小的內(nèi)部特征供應(yīng)鏈戰(zhàn)略和制造業(yè)技術(shù)。
(1)旋回性和波動(dòng)性
一種獨(dú)特的半導(dǎo)體的特征行業(yè)是高度周期性和不穩(wěn)定的性質(zhì)。展望未來(lái),預(yù)計(jì)這一趨勢(shì)將加劇:與快速增長(zhǎng)的時(shí)期,市場(chǎng)周期短市場(chǎng)衰退和創(chuàng)新周期。
這種周期性的性質(zhì)可以用這一事實(shí)來(lái)解釋半導(dǎo)體通常集成到產(chǎn)品與銷售時(shí)間的不到一年的時(shí)間,例如移動(dòng)手機(jī)。
這非常不同于相對(duì)穩(wěn)定汽車行業(yè)的情況。但即使在這里,與變異的數(shù)量和波動(dòng)性增加日益動(dòng)蕩的亞洲市場(chǎng)的重要性。
兩個(gè)行業(yè)的開(kāi)發(fā)周期經(jīng)常不一致:開(kāi)始通常不與開(kāi)發(fā)工作的開(kāi)始在半導(dǎo)體組件。在未來(lái),它是半導(dǎo)體技術(shù)已經(jīng)預(yù)期過(guò)時(shí)的開(kāi)始生產(chǎn)(SOP)[5]。
大膽的和簡(jiǎn)單的:這兩個(gè)產(chǎn)業(yè)在移動(dòng)不同的步伐。
(2)產(chǎn)品生命周期和創(chuàng)新的壓力
半導(dǎo)體行業(yè)集中在技術(shù)上進(jìn)步,表達(dá)其更小、更快,更便宜。因此,產(chǎn)品生命周期越來(lái)越短,類似于產(chǎn)品生命周期的本金從數(shù)據(jù)處理的客戶,即制造商和電信行的業(yè)。他們的銷售份額半導(dǎo)體市場(chǎng)占了42%和22%分別[6],他們符合法律放置一個(gè)新的產(chǎn)品在市場(chǎng)上每隔12到18個(gè)月,兩到三年的使用壽命。
相比之下,平均車輛制造的連續(xù)生產(chǎn)5年,緊隨其后的是服務(wù)生活十五年[5]。
(3)備件供應(yīng)
不同的產(chǎn)品生命周期帶來(lái)另一個(gè)挑戰(zhàn)兩個(gè)行業(yè)的協(xié)作:半導(dǎo)體行業(yè)并不準(zhǔn)備提供備用零件在長(zhǎng)期的基礎(chǔ)上。創(chuàng)新周期短,如果一個(gè)或電信產(chǎn)品變得有缺陷,消費(fèi)者傾向于購(gòu)買后續(xù)產(chǎn)品包括新技術(shù)。
然而,在汽車行業(yè),備件必須的可以在整個(gè)產(chǎn)品生命周期的汽車。因此,汽車行業(yè)通常需要保證半導(dǎo)體供應(yīng)商OEM電子產(chǎn)品供應(yīng)商硅供應(yīng)商晶片生產(chǎn)商發(fā)展連續(xù)生產(chǎn)備件供應(yīng)2 5年,2 - 7年部分可以提供修改的技術(shù)形式25年[7]。
這保證長(zhǎng)期供應(yīng)構(gòu)成了挑戰(zhàn)半導(dǎo)體行業(yè),他們只提供它有限的時(shí)間。即使在高成本、電子組件不能正確地存儲(chǔ)為更長(zhǎng)一段時(shí)間簡(jiǎn)單的車身部分可以,和維護(hù)生產(chǎn)零部件涉及高成本的能力。
(4)質(zhì)量
半導(dǎo)體行業(yè)擁有高度發(fā)達(dá)的質(zhì)量水平。檢查集成到制造過(guò)程,收益率通常在95%的謊言。這個(gè)行業(yè),即芯片離開(kāi)生產(chǎn)過(guò)程沒(méi)有缺陷(7 - 8)。此外,對(duì)于一些客戶,例如電信部門,其質(zhì)量是次要的。有缺陷的組件為移動(dòng)電話可以忽略或經(jīng)常加分路的。
這是不同的,當(dāng)車輛的質(zhì)量關(guān)注,特別強(qiáng)調(diào)需要放置相應(yīng)的安全方面。人的生命取決于車輛的正常運(yùn)行,所以那輛車制造商給機(jī)械穩(wěn)定性最高優(yōu)先級(jí)組裝的部件。
越來(lái)越多的電子控制單元汽車使組件的交互更復(fù)雜的和OEM最近實(shí)施更多嚴(yán)格的質(zhì)量標(biāo)準(zhǔn)。
這帶來(lái)了涉及資格活動(dòng)時(shí)間、成本和資源,使汽車行業(yè)猶豫地改變技術(shù)。與備用零件供應(yīng),這意味著半導(dǎo)體制造商需要年長(zhǎng)的制造業(yè)汽車工業(yè)技術(shù),這導(dǎo)致高成本。
(5)交貨期
交貨時(shí)間在半導(dǎo)體行業(yè)10之間16周,因?yàn)樾酒闹圃?前端)是非常復(fù)雜的,涉及到800流程步驟[9]。
相比之下,所有的制造商在汽車天汽車行業(yè)目標(biāo)完成,通過(guò)完成訂單執(zhí)行過(guò)程,從訂單到客戶交貨,在十天[10]。目前,最小交貨時(shí)間是兩個(gè)周[11]:這只占八分之一的領(lǐng)先時(shí)間半導(dǎo)體組件。
不同的交貨期和缺乏協(xié)調(diào)兩個(gè)行業(yè)之間的提示制造商建立戰(zhàn)略庫(kù)存數(shù)量的內(nèi)部在供應(yīng)鏈結(jié)構(gòu)。然而,由于快速創(chuàng)新周期,他們很快就會(huì)過(guò)時(shí)。
(6)計(jì)劃展望期
反映在不同生產(chǎn)交貨期不同計(jì)劃的視野。由于較長(zhǎng)時(shí)間,半導(dǎo)體行業(yè)經(jīng)營(yíng)長(zhǎng)期規(guī)劃視野不超過(guò)6個(gè)月[12]。
在較短的交貨時(shí)間和面向消費(fèi)者的需求靈活性,汽車行業(yè)在短期計(jì)劃基礎(chǔ):大會(huì)開(kāi)始前幾天,根據(jù)主生產(chǎn)計(jì)劃準(zhǔn)備原則。因此,汽車行業(yè)取得了更高層次的適應(yīng)性,即他們?cè)诙炭梢栽黾尤萘客ㄖ?
這是慣例,半導(dǎo)體供應(yīng)商可靠的規(guī)劃數(shù)據(jù)從他們的汽車客戶只在接下來(lái)的兩到三個(gè)月。所以,唯一的方法為了彌補(bǔ)缺乏規(guī)劃可靠性建立大型股票。
零部件與維修服務(wù)的提供除了完成原材料、在制品庫(kù)存、產(chǎn)成品的位移,物流必須完成貨物的維修服務(wù)活動(dòng)。僅將產(chǎn)成品運(yùn)至客戶并不意味著物流活動(dòng)的完結(jié),企業(yè)營(yíng)銷活動(dòng)的一個(gè)部分就是向客戶提供售后服務(wù),這主要包括當(dāng)產(chǎn)品損壞或出故障時(shí)向客戶提供部件,例如,汽車經(jīng)銷商必須設(shè)有高級(jí)維修服務(wù)部門以向客戶提供全套服務(wù)與汽車修理。向客戶提供充足零部件或更換部件對(duì)維修服務(wù)活動(dòng)來(lái)說(shuō)是極為重要的,而且物流部門應(yīng)確保哪里及何時(shí)顧客需要零部件,客戶就可容易方便地買到。在工業(yè)品市場(chǎng),產(chǎn)品可能是用于某企業(yè)的制造設(shè)備,當(dāng)設(shè)備因故停止運(yùn)轉(zhuǎn)時(shí)對(duì)用戶企業(yè)來(lái)說(shuō)將是極其糟糕的,它會(huì)引起生產(chǎn)線暫?;驈氐钻P(guān)閉。供應(yīng)商必須對(duì)之做出迅速、及時(shí)反應(yīng)并提供所需零部件
(7)制造柔性
半導(dǎo)體行業(yè)尋求達(dá)到最大利用生產(chǎn)資源的24/7生產(chǎn)計(jì)劃[8]。高年資的標(biāo)準(zhǔn),一個(gè)增加跨幾個(gè)組織分工水平,較長(zhǎng)時(shí)間限制上的靈活性車間。
在這方面,汽車工業(yè)是更多靈活,可以采取許多措施,如額外的變化,以應(yīng)對(duì)需求的突然增加。
不同特征之間的相關(guān)性顯示半導(dǎo)體和汽車工業(yè)在表格1中。
2.3.價(jià)值鏈的汽車和評(píng)估半導(dǎo)體行業(yè)
供應(yīng)鏈管理的主要目標(biāo)避免了牛鞭效應(yīng),作為指標(biāo)供應(yīng)鏈的低效率[13]。發(fā)生牛鞭效應(yīng)的凸顯了當(dāng)前的潛力改善汽車工業(yè)之間的價(jià)值鏈:越來(lái)越多的不穩(wěn)定市場(chǎng)和預(yù)測(cè)質(zhì)量差導(dǎo)致日常生產(chǎn)過(guò)剩和減產(chǎn)以及過(guò)時(shí)了股票和不可能突然做出回應(yīng)增加的需求。
牛鞭效應(yīng)的價(jià)值鏈主要造成的事實(shí)半導(dǎo)體供應(yīng)商沒(méi)有長(zhǎng)期和可見(jiàn)性中期需求。原因是缺乏系統(tǒng)集成和低容量規(guī)劃相協(xié)調(diào)在價(jià)值鏈流程。問(wèn)題是惡化的雙重操作要求:一方面,信息流被延遲;另一方面只手,是傳下來(lái)的一部分因此,半導(dǎo)體制造商的信息傾向于咨詢第三方為其長(zhǎng)期和來(lái)源中期規(guī)劃。廠房及倉(cāng)庫(kù)地址的選擇不論存儲(chǔ)設(shè)施是自己擁有還是租借,廠房和(或)倉(cāng)庫(kù)地址的選擇是極為重要的。將廠房或倉(cāng)庫(kù)設(shè)在市場(chǎng)附近,就可提高公司的顧客服務(wù)水平。適當(dāng)位置也能夠獲得貨物自廠房到倉(cāng)庫(kù)、廠房至廠房、或倉(cāng)庫(kù)到消費(fèi)地位移過(guò)程中較低的大批量貨物運(yùn)費(fèi)率。
通常,所提供的廠商的銷售計(jì)劃未來(lái)2 - 4個(gè)月不穩(wěn)定。甚至發(fā)布訂單修改;例如,如果客戶突然嗎請(qǐng)求更改。
2.4.汽車的價(jià)值鏈的弱點(diǎn)和半導(dǎo)體行業(yè)
下面的弱點(diǎn)之間的接口汽車和半導(dǎo)體產(chǎn)業(yè)的結(jié)果兩個(gè)行業(yè)的不同特點(diǎn):
●缺乏應(yīng)對(duì)周期性和波動(dòng)的能力
●長(zhǎng)期供應(yīng)的零部件仍不清楚
●不同的質(zhì)量要求
●不同的產(chǎn)品和創(chuàng)新周期
●不同的交貨期和規(guī)劃視野依然存在不同
●不同級(jí)別的靈活性在商店的地板上
在分析行業(yè)和在此基礎(chǔ)上缺點(diǎn),改進(jìn)的三個(gè)關(guān)鍵領(lǐng)域確認(rèn)為手段來(lái)改善供應(yīng)的汽車工業(yè)和半導(dǎo)體產(chǎn)品:
●加強(qiáng)協(xié)作
●確保直接和無(wú)畸變的信息流
●制造半導(dǎo)體生產(chǎn)更加靈活
3.模型、方法和策略協(xié)同價(jià)值鏈管理
本章的主要策略供應(yīng)鏈管理領(lǐng)域,解決識(shí)別的弱點(diǎn)并提供巨大的潛力三個(gè)方面的改進(jìn)。
(1)供應(yīng)商管理庫(kù)存(VMI)
供應(yīng)商管理庫(kù)存是一個(gè)連續(xù)的工具的補(bǔ)給計(jì)劃,針對(duì)這個(gè)連續(xù)的供應(yīng)貨物的整個(gè)物流鏈零售商。VMI基本上意味著供應(yīng)商接管貨物或管理的一部分全面管理股票。供應(yīng)商告知消費(fèi)數(shù)據(jù)和銷售和生產(chǎn)計(jì)劃的客戶,所以處理庫(kù)存獨(dú)立管理[14]。
(2)協(xié)同規(guī)劃、預(yù)測(cè)和補(bǔ)給(CPFR)
協(xié)同規(guī)劃、預(yù)測(cè)和補(bǔ)充方法旨在建立合作在制造商和零售商之間提高銷售預(yù)測(cè)。合作伙伴致力于CPFR在聯(lián)合協(xié)議,這也提出了金融和組織框架[15]。結(jié)合知識(shí)的增值網(wǎng)絡(luò),使規(guī)劃和滿足客戶需求,合作伙伴定義同步點(diǎn)交換他們的知識(shí)。因此,此銷售計(jì)劃的變化從一個(gè)單獨(dú)的聯(lián)合活動(dòng):預(yù)測(cè)共享和偏差進(jìn)行一個(gè)定義的過(guò)程。
(3)大規(guī)模定制
大規(guī)模定制的方法加入的經(jīng)濟(jì)體個(gè)人規(guī)模的批量生產(chǎn)質(zhì)量滿足客戶的需求取決于干預(yù)在商店的地板上是必要的,區(qū)別是由硬嗎和軟定制[14]。一個(gè)很艱難的定制。例如,方法是模塊化的工具包,它從標(biāo)準(zhǔn)化配置定制化產(chǎn)品,兼容的元素[15]。大眾使用這個(gè)策略其模塊化的橫向組件系統(tǒng)。另一個(gè)策略是延期的產(chǎn)品仍然存在通用盡可能長(zhǎng)時(shí)間,僅僅是定制的后階段的價(jià)值鏈[16]。這個(gè)軟信息定制的原則和支持客戶的個(gè)性化產(chǎn)品。這個(gè)可以做,例如,半導(dǎo)體芯片通過(guò)軟件配置。
提出的解決方法和策略不同的價(jià)值鏈中確定的弱點(diǎn)在半導(dǎo)體和汽車行業(yè)。
包裝包裝執(zhí)行兩項(xiàng)基本功能,即營(yíng)銷和物流。從營(yíng)銷意義上說(shuō),包裝可作為一種促銷形式和起到廣告的作用。包裝的尺寸、重量和包裝上印制的說(shuō)明吸引著顧客并傳遞產(chǎn)品信息。從物流的角度來(lái)看,包裝承擔(dān)著雙重任務(wù)。第一在儲(chǔ)藏和運(yùn)輸中包裝保護(hù)產(chǎn)品免于受損;在選址過(guò)程中,首要考慮因素應(yīng)是公司產(chǎn)品市場(chǎng)位置。顧客需要及原材料、部件、裝配件位置也是值得考慮的因素,因?yàn)槠髽I(yè)不僅關(guān)心運(yùn)出運(yùn)輸,也必須考慮運(yùn)人運(yùn)輸。其他較重要的、應(yīng)考慮的因素包括:勞動(dòng)力工資;運(yùn)輸?shù)姆奖阈?;市、縣、州等的稅率;社會(huì)治安問(wèn)題;法律要求問(wèn)題;當(dāng)?shù)匾蛩?,如社?huì)對(duì)新興行業(yè)的態(tài)度如何;土地成本問(wèn)題;其他便利設(shè)施。
第二通過(guò)減少裝卸進(jìn)而降低物料的裝卸成本。包裝可使產(chǎn)品儲(chǔ)存和流動(dòng)更容易。一般來(lái)說(shuō),當(dāng)公司涉及到國(guó)際銷售時(shí),包裝變得更為重要。銷往外國(guó)的產(chǎn)品要走更遠(yuǎn)距離并經(jīng)受更多裝卸活動(dòng),以國(guó)內(nèi)貨物的包裝形式,就不夠堅(jiān)固,不足以承受貨物出口的嚴(yán)峻考驗(yàn),尤其許多國(guó)家尚未實(shí)現(xiàn)足夠的機(jī)械化裝卸,裝卸靠的是幾乎未經(jīng)培訓(xùn)的人力。
4.參考工具包為合作的措施價(jià)值鏈管理和汽車之間半導(dǎo)體行業(yè)
弗勞恩霍夫舉行專家研討會(huì)制造工程研究所和自動(dòng)化音標(biāo)是用來(lái)進(jìn)行分析評(píng)估相關(guān)策略的確定弱點(diǎn)和必要的行動(dòng)。分析導(dǎo)致參考工具包的措施,而不是一個(gè)多面手解決方案。
參考工具的各種措施結(jié)合創(chuàng)建一個(gè)特定的工具包。
VMI和CPFR專注于協(xié)作和價(jià)值鏈的可見(jiàn)性來(lái)提高響應(yīng)能力旋回性和波動(dòng)性。直接和照顧不失真信息流動(dòng)抵消升級(jí)沿著價(jià)值鏈,從而避免了需求牛鞭效應(yīng)。在VMI促進(jìn)交流從日常運(yùn)營(yíng)數(shù)據(jù),CPFR增加它協(xié)調(diào)長(zhǎng)期預(yù)測(cè)來(lái)提高能力和投資計(jì)劃。
此外,這些措施包括在參考工具箱應(yīng)定制適合的需要實(shí)際的應(yīng)用程序。
例如,CPFR會(huì)議半導(dǎo)體行業(yè)不僅應(yīng)討論市場(chǎng)趨勢(shì),但也為選定預(yù)測(cè)產(chǎn)品組和半導(dǎo)體技術(shù)的基礎(chǔ)在明確定義的關(guān)鍵性能指標(biāo)[12]。
大規(guī)模定制方法推遲,模塊化和更多靈活的產(chǎn)品設(shè)計(jì)和戰(zhàn)略管理客戶訂單解耦點(diǎn)可以有效地減輕不同產(chǎn)品壽命的影響周期和創(chuàng)新周期。由于后期的產(chǎn)品差異化的增值過(guò)程,越來(lái)越少進(jìn)程內(nèi)的零件,庫(kù)存水平較低和計(jì)劃和控制是降低。作為一個(gè)結(jié)果,制造靈活性下穩(wěn)定生產(chǎn)條件增加,生產(chǎn)的復(fù)雜性計(jì)劃減少。
特別是模塊化策略解決備件供應(yīng)的問(wèn)題。標(biāo)準(zhǔn)化的架構(gòu)和接口可以取代。因此,模塊可以集成到現(xiàn)有的車輛結(jié)構(gòu)而原始功能是維護(hù)。
5.評(píng)估這些措施的參考工具
在一個(gè)專家研討會(huì),確定的措施參考工具箱進(jìn)行了評(píng)估標(biāo)準(zhǔn)的基礎(chǔ)上利益,努力和實(shí)用性。
利益是指該策略的有效性和答案的問(wèn)題:策略有助于滿足實(shí)用性評(píng)估是否可用于不同的策略,產(chǎn)品在這兩個(gè)行業(yè)都和協(xié)作模型或者如果他們實(shí)現(xiàn)只能在某些限制條件。第三個(gè)標(biāo)準(zhǔn)量化投入到實(shí)現(xiàn)測(cè)量和答案一個(gè)問(wèn)題:有多少工作之前半導(dǎo)體公司和汽車供應(yīng)商實(shí)現(xiàn)一個(gè)測(cè)量。
定義中的維度模型汽車之間協(xié)作的容量規(guī)劃和半導(dǎo)體行業(yè),研發(fā)的弗勞恩霍夫音標(biāo)是用來(lái)評(píng)估的措施提到標(biāo)準(zhǔn)的參考工具不同的角度[12]。的參考模型定義過(guò)程的維度、IT系統(tǒng)的策略長(zhǎng)期技術(shù)和區(qū)分容量規(guī)劃和操作訂單處理。每個(gè)確定的措施進(jìn)行了評(píng)價(jià)參考模型和相關(guān)的維度研究結(jié)果進(jìn)行了綜述。
例如,CPFR或VMI主要導(dǎo)致容量規(guī)劃流程的變化,反過(guò)來(lái),影響企業(yè)IT系統(tǒng)。模塊化,然而,需要重新調(diào)整企業(yè)生產(chǎn)策略和基本上改變半導(dǎo)體技術(shù)。通貨處理退貨處理,通常稱為反向分銷,是物流過(guò)程的一個(gè)重要方面。買方可能因?yàn)樨浳镉腥毕荨⑦^(guò)時(shí)、收到未訂購(gòu)或未購(gòu)買的貨物;或由于其他原因?qū)⒇浳锿私o賣方。反向分銷可比作在單一方向的路上走錯(cuò)了方向,因?yàn)榇蠖鄶?shù)貨物是朝著一個(gè)方向流動(dòng)的,多數(shù)物流系統(tǒng)處理反向貨物流動(dòng)時(shí)比較吃力。在許多行業(yè),顧客退貨是為了在保修期內(nèi)要求保修貨物、要求更換或重新加工。
評(píng)估參考工具包措施分手分成兩組:左邊的措施氣泡式圖表提供,一個(gè)高水平的,但受益難以實(shí)現(xiàn),而右邊的措施圖的提供一個(gè)高水平的同時(shí)受益容易實(shí)現(xiàn)。CPFR,舉例來(lái)說(shuō),是一種有效的方法來(lái)改善價(jià)值鏈,可以迅速使用合理的努力,實(shí)現(xiàn)兩個(gè)合作伙伴價(jià)值鏈。相比之下,模塊化如圖所示以上為最小化提供了巨大的潛力庫(kù)存,減少交貨期和解決部分問(wèn)題,但它需要很高的合作許多公司參與的價(jià)值鏈引入一個(gè)行業(yè)標(biāo)準(zhǔn)達(dá)到最大效率。
6.總結(jié)
不同的常常矛盾的行業(yè)特點(diǎn)以及缺乏同步把價(jià)值鏈之間的管理半導(dǎo)體和汽車工業(yè)復(fù)雜的任務(wù)。這個(gè)任務(wù)由一個(gè)策略,但無(wú)法解決需要結(jié)合的若干措施。提出了參考工具包創(chuàng)建的措施在現(xiàn)有的弱點(diǎn)和透明度個(gè)人改進(jìn)措施的有效性。單獨(dú)的措施和策略評(píng)估為了利益,工作努力和實(shí)用性。
參考工具包為合作的措施價(jià)值鏈管理和汽車之間半導(dǎo)體行業(yè)旨在更有效生產(chǎn)能力和更好的協(xié)調(diào)應(yīng)對(duì)市場(chǎng)波動(dòng)的價(jià)值鏈。
參考文獻(xiàn)
[1] Proff, H., 2010. Die Automobilindustrie zum Frühjahr[J], 2010.
[2] Riemenschneider, F, 2010. Chip-Knappheit führt zu.Produktionsstop bei .
http://www.elektroniknet.de/bauelemente/news/article/28381/0/C.
[3] Zapp, M, Forster, C. 2011. Reduzierung,ATZelektronik 6[J], p. 40.
[4] Statista, 2012. Anteil von Automotive Anwendungent[J] ,2008.
[5] TechnischewirtschaftlicheL?sungskonzepteAutomobilindustrie[P], 2009.
[6] German Electrical and Electronic Manufacturers' Association[P],2011.
[7] Stoppok[C], 2002. AutomobilindustrieFrankfurt am Main, 2002.
[8] Forster, Zapp [M].2011. Cross-Company .September 2011.
[9] Huethorst, K,Sultans of Swing: The Persistance of theBullwhip, 2011.
[10] Rinza, T, Boppert [J], 2007. Logistik im Zeichen zunehmender
[11] Schumacher,[U], 2002. Universit?t Klagenfurt - Reihe BWL aktuell 8.
[12] Zapp, M, Forster[C], Verl, A, Bauernhansl, T., 2012.
[13]Unternehmens und unternehmensübergreifend 6. bearb. u. erw, 2011.
[14] Werner, H., 2008. Supply Chain Management, Gundlagen[C], Verl, A,
Strategien,Wiesbaden:Betriebswirtschaftlicher Verlag Dr. Th. Gabler.
[15] Danese, P., 2007. Designing CPFR collaborations: insights from the
seven case studies, International Journal of Operations &Production
[16] Cheng, TCE, Li[J], Wan, CLJ, Wang, S. New York.2010.
[17] Forster, C., Zapp[M]., 2012. Im Spannungsfeld der Absatzm?rkte,
Halbleiterbauteile in der Automobilproduktion, Journal of IT &
Production 2, p. 28.
Available online at 2212-8271 2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Tetidoi:10.1016/j.procir.2013.09.054 Procedia CIRP 12 (2013)312 317 ScienceDirect8th CIRP Conference on Intelligent Computation in Manufacturing Engineering Collaborative value chain management between automotive and semiconductor industry:an analysis of differences and improvement measures C.Forstera*,M.Zappa,J.Aelkerb,E.Westkmpera,T.Bauernhansla aFraunhofer Institute for Manufacturing Engineering and Automation IPA,Stuttgart,Germany bUniversity of Stuttgart,Institute of Industrial Manufacturing and Management IFF,Stuttgart,Germany*Corresponding author.Tel.:+49-711-970-1912;fax:+49-711-970-97-1927.E-mail address:christoph.forsteripa.fraunhofer.de.Abstract The work presented in this paper is motivated by the differing supply chain characteristics of the automotive and the semiconductor industry.This paper will systematically identify and assess the weak points at the interfaces between these two industries.Based on this analysis,a reference model is presented intended as a toolkit of measures for collaborative value chain management in the automotive and semiconductor industry.The reference model defines a set of specific optimization measures relating to the categories of strategy,processes,technology and IT systems,designed to ensure a better alignment of planning and control processes between automotive and semiconductor industry.The model and the associated measures aim at a more efficient coordination of production capacity and a better response to market fluctuations between automotive and semiconductor industry.Thus,a more stable supply and a significant reduction of logistics costs in the entire value chain can be achieved.2012 The Authors.Published by Elsevier B.V.Selection and/or peer-review under responsibility of Professor Roberto Teti.Keywords:Value Chain Management;Supply Chain Management;Collaboration.1.Introduction Innovation and an increase in the value of cars are mainly due to electronics and,in particular,to semiconductor components.From airbags to navigation systems and automotive Ethernet:Microprocessors,microchips and analog components form the basis for a wide variety of vehicle parts.The share of electronics in the value-added in cars is already high and will rise over the next years to more than 60%especially since electrification is on the progress,from electric drive systems to pure electric cars(e-mobility),including the trend to networking automobiles with their environment 1.So,the successful collaboration of the automotive industry with its immediate suppliers for electronic parts and their suppliers in the semiconductor industry is of crucial importance.In March 2011,when the earthquake in Japan brought the production lines to a halt,it became evident how interconnected the microelectronics industry is.The impact extended to the material,component and system suppliers in the value chain and directly affected the automotive sector:A shortage in chip manufacturing spilled over to the supplier Hitachi and disrupted the production at four of five Japanese Nissan plants 2.Irrespective of the disaster in Japan,the supply of the automotive industry with semiconductor products proves difficult.As market becoming more and more volatile,differing manufacturing lead times,innovation and product life cycles,as well as the uncoordinated planning and control processes of both industries have led to overproduction and underproduction and thus to overstocking and supply shortages in recent years 3.2013 The Authors.Published by Elsevier B.V.Selection and peer review under responsibility of Professor Roberto Teti313 C.Forster et al./Procedia CIRP 12 (2013)312 317 2.Supply chain characteristics of the automotive andthe semiconductor industry2.1.The automotive value chain for semiconductor devicesThe value chain between semiconductorandautomotive industry has developed from a traditional,vertically integrated structure to a highly complex network of multiple partners.As automotive applicationsonly account for 8%of sales in the global semiconductor market 4,the automotive requirements are not the onlyfactors determining the supply chain strategy of thesemiconductor industry.The semiconductor manufacturers,which process theraw silicon wafers,usually take the role of 2ndtiersuppliers in the automotive value chain.That means,they deliver their products to automotive suppliers in theelectronics sector,which,in turn,supply one or severalautomotive manufacturers(Original Equipment Manufacturer,n nOEM),see Fig 1.Fig.1.Automotive semiconductor value chainThe process steps in semiconductor manufacturing are divided inton nfront-end and back-end processes.Atthe front end,the chips are manufactured,whileassembly,packaging and testing takes place at the backend.2.2.Value chain characteristics and differences of the automotive and the semiconductor industryThis section highlights the specific requirements to bemet by the value chain.The study follows a funnel-likeprocedure of firstanalyzingand comparingtheconditions of thebusiness environmentin theautomotive and semiconductor industry andthennarrowing down theinternal characteristicsof an supply chain strategy and manufacturingtechnology.Cyclicity and volatilityA distinctive characteristic of thesemiconductor industry is its highly cyclical and volatile nature.Looking to the future,this trend is expected to intensify:ever shorter market cycles with rapid growth periods,market slumps and innovation cycles.This cyclical nature can be explained by the fact thatsemiconductors are most often integrated into productswith sales periods of less than a year,for instance mobile phones.This differs very much from the relatively stablesituation in the automotive industry.But even here,volatility increases with the number of variants and the growing significance of the volatile Asian markets.The development cycles of the two industries are often out of line:The start usually not aligned with the start of development work on a semiconductor component.In the future,it isexpected that the semiconductor technology is already outdated at start of production(SOP)5.To put it bold and simple:The two industries move at different paces.Product life cycles and pressure to innovateThe semiconductor industry focuses on technological progress,as expressed in itssmaller,faster,cheaper.So,the product life cycles are short andanalogous to the product life cycles of their principali icustomers,i.e.manufacturers from the data processingand telecommunications sector.Their share of sales inthe semiconductor market accounts for 42%and 22%respectively 6 and in line withlaw they place a new product on the market every twelve to 18months,with a service life of two to three years.By contrast,an average vehicle is manufactured inseries production for five years,followed by a servicelife of up to fifteen years 5,see Fig 2.Fig.2.Differing Product Life CyclesSpare parts supplyThe differing product life cycles pose another challengefor the collaboration of the two industries:Thesemiconductor industry is not prepared to provide spareparts on a long-term basis.The innovation cycles areshortand if an IT or telecommunication product becomes defective,the end consumers tend to buy afollow-on product including new technology.In the automotive sector,however,spare parts mustbe available throughout the product life cycle of a car.So,the automotive industry often requires a guarantee Semi-conductorSupplierOEMElec-tronicsSupplierSiliconSupplierWaferProducerDevelop-mentSerial ProductionSpare Part Supply2-5 Years2-7 Years15 Years22 YearsAutomobileIndustryDevelop-mentPro-duction9-12 Months 6-18 MonthsSemiconductor ChipforComputer Industry314 C.Forster et al./Procedia CIRP 12 (2013)312 317 that parts can be supplied in unmodified technical form for up to 25 years 7.This guarantee for long-term supply poses a challenge for the semiconductor industry and they only offer it for a limited time.Even at high costs,electronic components cannot be properly stored for a longer period of time as simple car body parts can be;and maintaining production capacity for spare parts involves high costs.Quality The semiconductor industry boasts a highly advanced level of quality.As inspections are integrated into the manufacturing process,the yield usually lies at 95%in the industry,i.e.the share of chips that leaves the manufacturing process without defects 7-8.Moreover,for some customers,e.g.from the telecommunications sector,quality is of secondary importance.A few defective components for mobile phones can be ignored or routinely by-passed.This is different when the quality of vehicles is concerned,where special emphasis needs to be placed on the corresponding aspect of safety.Human lives depend on the proper functioning of vehicles,so that car makers give highest priority to the mechanical stability of the assembled parts.The increasing number of electronic control units in a vehicle makes the interaction of the components ever more complex and OEMs have recently imposed more stringent quality standards.This brings about that qualification activities involve much time,costs and resources,making the automotive industry hesitate to change technology.As with spare parts supply,this means that the semiconductor manufacturers need to keep older manufacturing technologies for the automotive industry,which result in high costs.Lead times Lead time in the semiconductor industry is between ten and sixteen weeks,because the manufacture of chips(front end)is very complex and involves up to 800 process steps 9.By contrast,all manufacturers in the automotive industry aim at accomplishing the-day car,which passes through the complete order fulfillment process,from order placement to customer delivery,within ten days 10.Currently,the minimum lead time is two weeks 11:this accounts for only one eighth of the lead time for semiconductor components.The different lead times and the lack of coordination between the two industries prompt the manufacturers to build up strategic inventories at a number of internal points in the supply chain structure.However,due to the fast innovation cycle,they quickly become obsolete.Planning horizons The different production lead times are reflected in the differing planning horizons.Due to the long lead times,the semiconductor industry operates on longer planning horizons of up to six months 12.With shorter lead times and customer-driven demand for flexibility,the automotive industry plans on a short-term basis:A few days before assembly starts,the master production schedule is prepared according to the just-in-sequence principle.As a consequence,the automotive sector has achieved a higher level of adaptability,i.e.they can increase capacity at short notice.It is usual practice that semiconductor suppliers get reliable planning data from their automotive customers only for the next two to three months.So,the only way to compensate for the lack of planning reliability is to build up large stocks.Manufacturing flexibility The semiconductor industry seeks to achieve maximum utilization of its production resources with a 24/7 production schedule 8.High qualification standards,an increase in labor division across several organizational levels,and long lead times restrict the flexibility on the shop floor.In this regard,the automotive industry is more flexible and can resort to a number of measures,such as extra shifts,to respond to a sudden increase in demand.The correlation between the different characteristics of semiconductor and automotive industry is displayed in Table 1.Table 1.Comparison of different industry characteristics 2.3.Assessment of the value chain of the automotive and semiconductor industry A primary goal of supply chain management is to avoid the bullwhip effect,which serves as an indicator of inefficiencies in the supply chain 13.The occurrence of the bullwhip effect highlights the current potential for improvement in the value chain between semiconductor Characteristics Semiconductor industry Automotive industry Cyclicity and volatility Very high Moderate Product life cycles and innovation cycles 12-18 months 22 years Supply of spare parts Short 25 years Quality standard Moderate Very high Lead times 10-16 weeks 2 weeks Manufacturing flexibility Very low High 315 C.Forster et al./Procedia CIRP 12 (2013)312 317 and automotive industry:more and more volatile markets and poor forecasting quality result in daily overproduction and underproduction as well as obsolete stocks and make it impossible to respond to a sudden increase in demand.The bullwhip effect in the automotive-semiconductor value chain is mainly caused by the fact that semiconductor suppliers have no visibility into long-and medium-term demand.The reasons are a lack of system integration and poorly coordinated capacity planning processes within the value chain.The problem is worsened by a double manipulation of demands:On the one hand,the information flow is delayed;on the other hand,OEMs pass down only part of the given information so that the semiconductor manufacturers tend to consult third-party sources for their long-and medium-term planning.Often,the provided sales plans from the OEMs for the next 2-4 months are not stable.Even released orders are modified;for instance,if the customer suddenly requests changes.2.4.Weak points of the value chain of the automotive and semiconductor industry The following weak points at the interface between automotive and semiconductor industry result from the different characteristics of the two industries:Lack of ability to respond to cyclicity and volatility Long-term supply of spare parts remains unclear Differing quality requirements Differing product and innovation cycles Differing lead times and planning horizons remain unsynchronized Different levels of flexibility on the shop floor After analyzing both industries and based on the above weak points,three key areas for improvement can be identified as levers to improve the supply of the automotive industry with semiconductor products:Strengthening of collaboration Ensuring direct and undistorted information flow Making semiconductor production more flexible 3.Models,approaches and strategies for collaborative value chain management This chapter presents the main strategies from the field of supply chain management that address the identified weak points and offer great potential for the three areas of improvement.Vendor Managed Inventory(VMI)Vendor Managed Inventory is a tool for Continuous Replenishment Planning,aiming at the continuous supply of goods throughout the logistic chain from manufacturer to retailer.VMI basically means that suppliers take over part of the management of goods or fully manage stocks.The supplier gets informed about the consumption figures and the sales and production planning of the customer and so handles inventory management independently 14.Collaborative Planning,Forecasting and Replenishment(CPFR)The Collaborative Planning,Forecasting and Replenishment approach aims to build collaboration between manufacturers and retailers to improve the sales forecasts.The partners commit themselves to CPFR in a joint agreement,which also sets out the financial and organizational framework 15.To combine the knowledge in the value-added network and enable planning and fulfillment of customer demand,the partners define synchronization points to exchange their knowledge.So,sales planning changes from a separate to a joint activity:Forecasts are shared and deviations are discussed in a defined process.Mass Customization The Mass Customization approach joins the economies of scale of mass production Masswith the individual satisfaction of customer needs Depending on whether interventions on the shop floor are necessary or not,a distinction is made between hard and soft customization 14.One hard customization method is,for instance,the modular toolkit,which configures customized products from standardized,compatible elements.Volkswagen uses this strategy in its modular transverse component system.Another strategy is postponement where the product remains generic as long as possible and is only customized at the later stages of the value chain 16.Self-customization is a principle of soft customization and enables the customer to personalize the product.This can be done,for instance,with semiconductor chips by means of software configuration.The presented approaches and strategies address different weak points identified in the value chain between semiconductor and automotive industry.4.Reference toolkit of measures for collaborative value chain management between automotive and semiconductor industry At an expert workshop held at the Fraunhofer Institute for Manufacturing Engineering and Automation IPA,a fit/gap analysis was used to evaluate the relevance of the strategies for the identified weak points and the necessary actions.The analysis resulted in a Reference Toolkit of Measures instead of a generalist solution,see Table 2.316 C.Forster et al./Procedia CIRP 12 (2013)312 317 The various measures of the reference toolkit can becombined to create a case-specific toolkit.Table 2.Reference toolkit of measuresMeasuresConflictingfieldsVMICPFRPostpone-mentModular-izationSelf-f fcustomi-zationCyclicity and volatilityDiffering product life and innovationcyclesDiffering demandson spare partssupplyDiffering quality requirementsDiffering lead times and planninghorizonsuStrong impactuMedium impactuNo impacutBoth VMI and CPFR focus on collaboration andvisibility into then nvalue chain to increase responsiveness to cyclicity and volatility.Taking care of direct andundistorted information flows counteracts escalations in demand along the value chain and thus avoids thebullwhip effect.While VMI promotes the exchange of data from daily operations,CPFR adds to it the coordination of long-term forecasts to improve capacityand investment planning.Furthermore,the measures included in the presentedreference toolkit shall be customized to suit the needs of practical application.For example,a CPFR meeting inthe semiconductor industry should therefore not only discuss market trends,but also forecasts for selectedproduct groups and semiconductor technologies basedon well-defined key performance indicators 12.The Mass Customization approachespostponement,modularization and self-f f customizationwith their moreflexible product design and strategic management of thecustomer order decoupling point make it possible to efficiently mitigate the effect of the differing product life cycles and innovation cycles.Due to late product differentiation in the value-added process,there are lessin-process parts,the stock levels are lower and theplanning and control effort is reduced.As a result,manufacturing flexibility under stable manufacturing conditions is increased and the complexity of production planning reduced.Especiallymodularization strategiesaddresstheproblem of spare parts supply.Standardized architecture and interfaces make it possible to replace discontinuedmodules.Thus,modules can be integrated into theexisting vehicle architecture while original functionalityis maintained.5.Evaluating the measures of the reference toolkitAt an expert workshop,the identified measures of thereference toolkit were evaluated based on the criteria of benefit,effortandpracticability.The results arepresented in the bubble chart of Fig.3.The benefit refers to the effectiveness of the strategy and answers the question:thestrategy help to meet thePracticabilityassesses whether a strategy can be used for the differentproducts and the collaboration models in both industries or if their implementation is only possible under certain,restricted conditions.The third criterion quantifies theeffort invested in implementing a measure and answers the question
收藏